Die MAC Adresse und die Funktion in IPv4 und IPv6

In der Welt der Computernetzwerke ist die MAC-Adresse (Media Access Control Address) ein zentraler Bestandteil der Netzwerkkommunikation. Sie ermöglicht die eindeutige Identifikation von Netzwerkgeräten auf der sogenannten Data Link Layer (Sicherungsschicht, Schicht 2) des OSI-Modells. Die MAC-Adresse ist ein fest eingebrannter, hardwarebasierter Identifikator, der Netzwerkadapter – z. B. Ethernet- oder WLAN-Karten – weltweit eindeutig kennzeichnet.
Doch ihre Bedeutung reicht über die lokale Kommunikation hinaus, insbesondere bei der Einbindung in IP-basierte Netzwerke wie IPv4 und IPv6. In diesem Artikel beleuchten wir die Struktur, Funktion und Relevanz der MAC-Adresse sowie ihre Rolle in modernen Netzwerken.

Aufbau und Struktur der MAC-Adresse

Die MAC-Adresse (Media Access Control Address) ist eine weltweit eindeutige Hardwareadresse, die aus 48 Bit (6 Byte) besteht. Sie wird im Hexadezimalformat dargestellt und in sechs Gruppen zu je zwei Zeichen unterteilt, z. B.:
00:1A:2B:3C:4D:5E
Die Darstellung basiert auf der Unterteilung der 48 Bit in zwei zentrale Abschnitte.

„Die MAC Adresse und die Funktion in IPv4 und IPv6“ weiterlesen

Online-Vortrag: Internet of Things (IoT) entdecken – VHS Regensburger Land

Internet of Things Online Vortrag am 03.05.2025 um 16:00

Die Volkshochschule Regensburger Land lädt am Samstag, den 3. Mai 2025, von 16:00 bis 16:45 Uhr zu einem spannenden und kostenlosen Online-Vortrag über das Internet of Things (IoT) ein.

Die Veranstaltung richtet sich an Technikbegeisterte, Bastler, Programmierer, sowie alle die erste Schritte mit Mikrocontrollern wie dem ESP32 oder Arduino UNO wagen möchten. Besonders für Einsteiger bietet dieser Vortrag einen leicht verständlichen und praxisnahen Einstieg in die Welt der IoT-Technologien.

Der erfahrene Referent Karl Högerl präsentiert live den Einsatz von drei Arduino-Geräten, sowie einem ESP32-Modul mit Kamerafunktion. Die Teilnehmer erhalten einen Einblick, wie IoT-Komponenten kommunizieren, Daten austauschen und sich sinnvoll für kreative Lösungen im Alltag einsetzen lassen – vom Smart Home bis zur Umwelterfassung.

Die Veranstaltung findet online über Zoom statt. Der Zugangslink wird allen angemeldeten Teilnehmer spätestens am Veranstaltungstag per E-Mail zugeschickt. Eine vorherige Anmeldung über die Website der VHS ist erforderlich – die Teilnahme ist kostenfrei.

Jetzt kostenlos teilnehmen und die Welt des IoT entdecken!

🔗 Zur Anmeldung auf der Website der VHS Regensburger Land

Das Internet der Dinge – Die Schlüsseltechnologie der Zukunft

Internet Der Dinge

Einleitung: Was ist das Internet der Dinge?

Das „Internet der Dinge“ (englisch: Internet of Things, kurz IoT) beschreibt die zunehmende Vernetzung physischer Objekte mit dem Internet. Dabei handelt es sich nicht nur um klassische Computer oder Smartphones, sondern auch um Alltagsgegenstände wie Kühlschränke, Heizungen, Uhren, Autos, Produktionsmaschinen oder medizinische Geräte. Diese Objekte sind mit Sensoren, Software und anderen Technologien ausgestattet, die es ihnen ermöglichen, Daten zu sammeln, zu übertragen und in vielen Fällen eigenständig zu analysieren oder auf bestimmte Umgebungsreize zu reagieren.

Der zentrale Gedanke des IoT ist, dass Geräte miteinander und mit zentralen Systemen kommunizieren, um Prozesse zu optimieren, Ressourcen effizienter zu nutzen und neue Dienstleistungen zu ermöglichen. Dabei verschmilzt die physische mit der digitalen Welt – eine Entwicklung, die tiefgreifende Auswirkungen auf unser tägliches Leben, unsere Arbeit und unsere Wirtschaft hat.

Warum ist das Internet der Dinge eine Schlüsseltechnologie?

In den kommenden Jahren wird das IoT zur zentralen Infrastruktur für digitale Innovationen werden. Schon heute ist erkennbar, dass das IoT in zahlreichen Bereichen
– von der Industrie über den Haushalt bis zur Gesundheitsversorgung – grundlegende Veränderungen anstößt. Die Gründe, warum diese Technologie eine Schlüsselrolle einnehmen wird, sind vielfältig. „Das Internet der Dinge – Die Schlüsseltechnologie der Zukunft“ weiterlesen

Das SOAP Protokoll zum Datenaustausch

In modernen IT-Systemen ist der zuverlässige Austausch von Daten zwischen Anwendungen essenziell. Das SOAP-Protokoll (Simple Object Access Protocol) bietet hierfür eine plattformunabhängige, standardisierte Lösung auf XML-Basis. Es ermöglicht strukturierte Kommunikation über Netzwerke – typischerweise via HTTP.

Im Gegensatz zu REST zeichnet sich SOAP durch umfangreiche Spezifikationen und Erweiterungen wie WS-Security oder WS-ReliableMessaging aus. Es eignet sich besonders für komplexe, unternehmenskritische Systeme mit hohen Anforderungen an Sicherheit und Transaktionssicherheit.

Obwohl moderne REST-APIs in vielen Bereichen dominieren, bleibt SOAP in komplexen Unternehmensumgebungen wie der Finanzbranche, im Gesundheitswesen oder bei sicherheitskritischen Anwendungen von zentraler Bedeutung. Dies liegt vor allem an den umfangreichen Spezifikationen, die SOAP mitbringt, um Sicherheit, Transaktionen und Nachrichtenrouting zu ermöglichen.

Die folgende Darstellung beleuchtet die Grundlagen, die Funktionsweise sowie ein Beispiel zur Nutzung von SOAP-Webservices.

„Das SOAP Protokoll zum Datenaustausch“ weiterlesen

Grundlagen REST-API mit HTTP Methoden

Die REST API (Representational State Transfer Application Programming Interface) stellt Schnittstellen für die Entwicklung von Webservices zur Verfügung, die auf den Prinzipien des HTTP-Protokolls basieren. REST wurde ursprünglich von Roy Fielding in seiner Dissertation im Jahr 2000 beschrieben und ist heute eine der am häufigsten eingesetzten Methoden, um Dienste im Web bereitzustellen.

Die REST-Architektur zeichnet sich durch ihre Einfachheit, Skalierbarkeit, Performanz und leichte Integration mit verschiedensten Systemen aus. RESTful APIs ermöglichen es, verteilte Systeme effizient miteinander kommunizieren zu lassen, indem sie auf standardisierten HTTP-Methoden und einem klaren Ressourcenmodell beruhen.

„Grundlagen REST-API mit HTTP Methoden“ weiterlesen

Netzneutralität des Internet in den USA aufgehoben

Das Urteil zur Netzneutralität des United States Court of Appeals for the Sixth Circuit vom 2. Januar 2025 bestätigt die Entscheidung der Federal Communications Commission (FCC), die Netzneutralität in den USA aufzuheben.

Die Netzneutralität gewährleistet seit Jahrzehnten, dass alle Daten im Internet gleich behandelt werden, unabhängig von Inhalt, Absender oder Empfänger. Durch die Aufhebung dieser Regelung können US-Internetdienstanbieter nun bestimmten Datenverkehr priorisieren oder verlangsamen oder mit Geofencing eingrenzen.

Mögliche Auswirkungen auf Nutzer von US-Diensten in Deutschland

„Netzneutralität des Internet in den USA aufgehoben“ weiterlesen

Frohe Weihnachten und ein erfolgreiches Jahr 2025

Weihnachtsbaum mit Krippe

Frohe Weihnachten und ein glückliches neues Jahr! 🎄✨

Liebe Leserinnen und Leser,

wieder neigt sich ein ereignisreiches Jahr dem Ende entgegen. Die Zeit der Besinnlichkeit und des Miteinanders lädt uns ein, innezuhalten, Dankbarkeit zu zeigen und neue Kraft für die kommenden Herausforderungen zu schöpfen.

Ich möchte mich an dieser Stelle herzlich bei euch bedanken – für euer Interesse, eure Treue und die vielen inspirierenden Momente, die ihr mir das ganze Jahr über geschenkt habt. Ihr seid der Grund, warum ich mit so viel Leidenschaft und Freude an meinem Blog arbeite!

Weihnachten – ein Fest der Liebe und Hoffnung

Lasst uns die Weihnachtszeit und das neue Jahr nutzen, um Zeit mit unseren Liebsten zu verbringen, die kleinen Freuden des Lebens zu genießen und neue Inspiration für das kommende Jahr zu finden. Ob bei einer gemütlichen Tasse Tee, dem Duft von frisch gebackenen Plätzchen oder dem warmen Licht des Weihnachtsbaumes – diese Momente schenken uns wertvolle Erinnerungen, die bleiben.

Ein Blick nach vorn – das Jahr 2025 erwartet uns

Das neue Jahr steht vor der Tür, und mit ihm neue Chancen, Ideen und Erlebnisse. Lasst uns gemeinsam mutig in die Zukunft blicken und mit Optimismus an unseren Zielen arbeiten.

Ich wünsche euch und euren Familien ein friedliches und frohes Weihnachtsfest sowie einen guten Rutsch in ein gesundes, glückliches und erfolgreiches neues Jahr.

Vielen Dank, dass ihr Teil meiner kleinen Blog-Gemeinschaft seid. Ich freue mich darauf, auch im nächsten Jahr wieder spannende Inhalte mit euch zu teilen und gemeinsam zu wachsen.

Herzliche Grüße,

Karl Högerl

Netzwerk Kabel mit metallischen Leitern

Netzwerkkabel

Netzwerkkabel spielen eine zentrale Rolle bei der Verbindung von Geräten in einem Computernetzwerk. Sie stellen sicher, dass Daten effizient und zuverlässig übertragen werden. Unter den verschiedenen Arten von Netzwerkkabeln sind STP (Shielded Twisted Pair) und UTP (Unshielded Twisted Pair) die gängigsten. Beide haben ähnliche Designs und bestehen aus gedrehten Kabelpaaren, unterscheiden sich jedoch in Bezug auf Abschirmung und EMI (elektromagnetische Interferenzen) Widerstandsfähigkeit.

In Deutschland ist der Einsatz von STP-Kabeln besonders weit verbreitet. Durch die zusätzliche Abschirmung der Kabel bieten sie einen besseren Schutz vor äußeren elektromagnetischen Störungen und sorgen für eine stabilere und zuverlässigere Datenübertragung. Besonders wichtig ist dies in Umgebungen mit hohem EMI-Aufkommen. Daher werden STP abgeschirmte Kabel oft in industriellen oder kommerziellen Umgebungen eingesetzt, wo diese Art von Störungen häufiger sind.

Im Vergleich dazu sind UTP-Kabel weniger anfällig für physische Schäden, weil sie technischer einfacher aufgebaut sind.  Dieser Kabeltyp ist flexibler und einfacher zu installieren.

Sowohl STP- als auch UTP-Kabel haben ihre spezifischen Vorzüge. Ihre Auswahl hängt von der spezifischen Netzwerkumgebung und den Anforderungen ab.

Tabelle von Netzwerkkabel Typen

Kat. Max. Frequenzbereich Geschwindigkeit Anwendungs-bereich Stecker
Cat 1 n/a Bis zu 1 Mbps Ältere Telefonleitungen RJ11
Cat 2 1 MHz Bis zu 4 Mbps Ältere Telefonleitungen und Netzwerke RJ11, RJ45
Cat 3 16 MHz Bis zu 10 Mbps Ältere Telefonleitungen und Netzwerke RJ45
Cat 4 20 MHz Bis zu 16 Mbps Ältere Netzwerke (Token Ring) RJ45
Cat 5 100 MHz Bis zu 100 Mbps Heim- und Büronetzwerke RJ45
Cat 5e 100 MHz Bis zu 1 Gbps Heim- und Büronetzwerke RJ45
Cat 6 250 MHz Bis zu 1 Gbps (10 Gbps bei kurzen Distanzen) Büronetzwerke, Rechenzentren RJ45
Cat 6a 500 MHz Bis zu 10 Gbps Rechenzentren, großflächige Netzwerke RJ45
Cat 7 600 MHz Bis zu 10 Gbps Rechenzentren, großflächige Netzwerke GG45, TERA
Cat 7a 1000 MHz Bis zu 10 Gbps Rechenzentren, großflächige Netzwerke GG45, TERA
Cat 8.1 2000 MHz Bis zu 40 Gbps Rechenzentren RJ45
Cat 8.2 2000 MHz Bis zu 40 Gbps Rechenzentren ARJ45

Alternativ kann eine Verkabelung mit Lichtwellenleitern durchgeführt werden.

 

 

 

 

Der private Adressenbereich bei IPv4

Das Internet entstand aus dem ARPAnet, das ein Produkt des kalten Krieges zwischen der Sowjetunion und den USA war. Es wurde in den 1960er Jahren von der Advanced Research Projects Agency, einer Abteilung des US-Verteidigungsministeriums, geschaffen. Es wurde ein dezentrales Netzwerk zur Übertragung von Daten mit Datenpaketen geschaffen.

1969 begannen vier Elite Universitäten – UCLA, Stanford, UC Santa Barbara und das University of Utah Research Institute das Arpanet aufzubauen – Sie wurden als die ersten Knotenpunkte des neuen Netzwerks. Die Verbindung zwischen diesen Knotenpunkten wurde mit speziell entwickelten Schnittstellen und Protokollen hergestellt.

Im Jahr 1990 wurde das ARPAnet außer Betrieb genommen, als das Internetprotokoll IPv4 eingeführt wurde und das Netzwerk in das öffentliche Internet integriert wurde.

Da die Anzahl der im Internet genutzten Geräte im Laufe der Jahre stark anstieg, erkannten die Experten, dass der Adressraum mit 32 Bit zu stark begrenzt ist. Jede Adresse im öffentlichen Internet darf nur einmal genutzt werden. Um die vielen Unternehmensnetze zu ermöglichen, wurde die  Technologie NAT (Network Address Translation) entwickelt und für die Netzwerk Klassen A bis C private Adressenpools definiert. Später wurde CIDR (Classless Inter-Domain Routing) eingeführt.

Welche privaten Adressenbereiche gibt es?

IPv4 reserviert bestimmte Adressbereiche für den privaten Gebrauch. Hier sind die drei private Adressbereiche von IPv4 mit Beispielen.

1. Private Adressbereich gemäß RFC 1918

      1. 10.0.0.0 bis 10.255.255.255 mit 224-2 Adressen pro Netz für Unternehmen mit großen Adressenbedarf
        Beispiel:
        Netzadresse 10.0.0.0
        IP Adresse 10.0.1.4
        Broadcast Adresse 10.255.255.255
        Subnetzmaske 255.0.0.0
      2. 172.16.0.0 bis 172.31.255.255 mit 216-2 Adressen pro Netz für Unternehmen mit mittleren Adressenbedarf
        Beispiel:
        Netzadresse 172.16.0.0
        IP Adresse 172.16.0.23
        Broadcast Adresse 172.16.255.255
        Subnetzmaske 255.255.0.0
      3. 192.168.0.0 bis 192.168.255.255 mit 28-2 pro Netz Adressen für Unternehmen mit geringen Adressenbedarf
        Beispiel:
        Netzadresse 192.168.3.0
        IP Adresse 192.168.3.120
        Broadcast Adresse 192.168.3.255
        Subnetzmaske 255.255.255.0

2. Link-Local Adressbereich gemäß RFC 3927
              169.254.0.0 bis 169.254.255.255 für die Übertragung von einer Adresse zu gleichzeitig mehreren Adressen

Aufbau der Netzwerk Adressierung

Angenommen, wir haben ein Netzwerk mit der IP-Adresse 192.168.3.21 und einer Subnetzmaske von 255.255.255.0.

In diesem Fall ist die IP-Adresse 192.168.3.0 die Netzadresse, also die Adresse des vorliegenden Netzwerks.

IP-Adressen werden verwendet, um einzelne Geräte in einem Netzwerk zu identifizieren. Jedes Gerät in einem Netzwerk hat eine eindeutige IP-Adresse, wie zum Beispiel 192.168.3.1 oder 192.168.3.21.

Die Subnetzmaske gibt an, welcher Teil der IP-Adresse die Netzwerkadresse ist und welcher Teil für die Identifizierung der einzelnen Geräte im vorliegenden Netz verwendet wird. In diesem Fall ist die Subnetzmaske 255.255.255.0, was bedeutet, dass die ersten drei Zahlenblöcke (192.168.3) die Netzwerkadresse sind und der letzte Zahlenblock (0) für die Identifizierung der Geräte im Host verwendet wird.

Die Broadcast-Adresse ist die höchste Adresse in einem Netzwerk und wird verwendet, um Daten gleichzeitig an alle Geräte im Netzwerk zu senden. In unserem Beispiel wäre die Broadcast-Adresse 192.168.3.255. Wenn also ein Gerät eine Nachricht an alle anderen Geräte im Netzwerk senden möchte und die genaue IP-Adresse nicht kennt, würde es diese Adresse als Zieladresse verwenden.

Einsatzbereich der privaten IP-Adressen

Diese Adressbereiche sind für den privaten Gebrauch in lokalen Netzwerken vorgesehen. Sie können durch NAT beliebig oft in Netzen genutzt werden und werden nicht im Internet geroutet. Sie ermöglichen es vielen Organisationen jeweils eigene IP-Adressen in ihren Netzwerken zu verwenden, ohne mit öffentlichen Adressen zu kollidieren.

 

 

Primär-, Sekundär- und Tertiärverkabelung bei Netzwerken

In der Netzwerktechnik werden häufig die Begriffe Primärverkabelung, Sekundärverkabelung und Tertiärverkabelung verwendet, um verschiedene Aspekte der Verkabelungsinfrastruktur zu beschreiben. Dazu ein Vergleich der Primär-, Sekundär- und Tertiärverkabelung.

blankVerkabelung von Netzen

Beschreibung:
SV = Standortverteiler
GV = Gebäudeverteiler
EV = Etagenverteiler

Primärverkabelung

  • Die Primärverkabelung umfasst die Hauptverkabelung eines Gebäudes oder Campus. Sie stellt die grundlegende Infrastruktur für die Netzwerkkonnektivität bereit und verbindet den zentralen Netzwerkbereich, wie beispielsweise das Rechenzentrum oder den Serverraum, mit den verschiedenen Endpunkten im Gebäude.
  • Die Primärverkabelung folgt üblicherweise bestimmten Standards wie zum Beispiel bei Ethernet mit metallischen Leitern (mit Cat5e, Cat6, Cat6a oder Cat7) oder Glasfaser (Singlemode, Multimode oder Monomode), um eine zuverlässige und leistungsfähige Übertragung von Daten zu gewährleisten.
  • Die Primärverkabelung kann mehrere Hunderte von Metern bis zu mehreren Kilometern umfassen, je nach den Anforderungen des Netzwerks und der Größe des Gebäudes oder Campus. Je nach Länge können dabei Repeater zur Signalverstärkung eingesetzt werden.

Sekundärverkabelung

  • Die Sekundärverkabelung bezieht sich auf die Verkabelung innerhalb eines bestimmten Bereichs oder Raums, wie beispielsweise Büros, Arbeitsbereiche oder einzelne Etagen. Sie stellt die Verbindung zwischen der Primärverkabelung und den Endgeräten, wie Computern, Telefonen oder Druckern, her.
  • Die Sekundärverkabelung folgt in der Regel den gleichen Standards wie die Primärverkabelung, um eine nahtlose Konnektivität innerhalb des betreffenden Bereichs zu gewährleisten.
  • Die Länge der Sekundärverkabelung ist normalerweise begrenzt und kann je nach den räumlichen Gegebenheiten und Anforderungen variieren, typischerweise im Bereich von einigen Metern bis mehr als einhundert Meter.

Tertiärverkabelung

  • Die Tertiärverkabelung bezieht sich auf die Verkabelung auf einer sehr lokalen Ebene, wie z. B. Verbindungen zwischen einzelnen Anschlüssen wie Patchdosen und Geräten innerhalb eines Arbeitsbereichs. Sie umfasst in der Regel Patchkabel, Steckverbinder und Verteiler, um eine flexible Verbindung zwischen Endgeräten zu ermöglichen.
  • Die Tertiärverkabelung kann die gleichen Standards wie die Primär- und Sekundärverkabelung verwenden oder spezielle Kabeltypen für kurze Strecken und Flexibilität aufweisen, wie z. B. RJ45-Patchkabel oder optische Patchkabel.
  • Die Länge der Tertiärverkabelung ist normalerweise sehr kurz, typischerweise im Bereich von wenigen Metern bis mehr als einhundert Meter, um die direkte Verbindung zwischen den Endgeräten herzustellen.

 

Karte zu Ausfällen des Internets

Das Internet verbindet die Firmen- und Privatnetze, die oft auch Intranet genannt werden. Durch die von Deutschland und der EU illegal verhängten Sanktionen kann es zu Ausfällen im deutschen und weltweiten Internet kommen. Denn nur die UN darf Sanktionen verhängen und das ist nicht passiert. Bei einem großflächigen Ausfall des Stromnetzes gibt es einige Zeit später den Ausfall des Internets.

Um feststellen zu können, wo das Internet ausgefallen oder beschädigt ist, gibt es die „Tausend Augen„, eine Dienstleistung von CISCO.

blank

 

Das ISO-OSI Schichtenmodell

Um die  Datenübertragung in Netzen leichter beschreiben zu können, wurde in den 1960er Jahren das DoD Schichtenmodell entwickelt.

Schicht Name
4 Process
3 Host-to-Host
2 Internet
1 Network Access

Dieses Modell besteht aus 4 Schichten und bildet eine Grundlage des heute verwendeten ISO-OSI Schichtenmodells. Die Organisation ISO hat den Open Systems Interconnect im Jahr 1978 entworfen.

Das heutige OSI Modell nutzt 7 Schichten, bei der die Kommunikation zwischen Sender und Empfänger mit Hilfe von technischen Einrichtungen beschrieben wird.

Schicht Deutsche Bezeichnung Englische Bezeichnung Protokolle Geräte oder Hardware
7 Anwendungs-schicht Application Layer HTTPS
FTP
SMTP
LDAP
Gateway
Proxy
6 Darstellungs-schicht Presentation Layer
5 Sitzungsschicht Session Layer
4 Transport-schicht Transport Layer TCP
UDP
3 Vermittlungs-schicht Network Layer IP
ICMP
IPsec
Router
Layer 3 Switch
2 Sicherungs-schicht Data Link Layer WLAN
Ethernet
MAC
Switch
Bridge
Access-Point
1 Bitübertragungs-schicht Physical Layer 1000BASE-T
Token Ring
Repeater
Hub
Netzwerk-kabel

In Schicht 7 werden Daten durch die Anwendung über das Netzwerk an ein weiteres Gerät gesandt.

Das ISO-OSI Schichtenmodell

Dabei nehmen die Daten den Weg von Schicht 7 (Application Layer) des Senders zu Schicht 1 (Physical Layer) des Senders. Dann werden die Daten als Datenpakete über das Netzwerk zum Ziel transportiert. Beim Empfänger nehmen die Daten den Weg von Schicht 1 zu Schicht 7 und werden aufbereitet. Die Anwendung im Empfänger nutzt die Daten und visualisiert sie.

 

 

Barrierefreiheit