Netzwerk Kabel mit metallischen Leitern

Netzwerkkabel

Netzwerkkabel spielen eine zentrale Rolle bei der Verbindung von Geräten in einem Computernetzwerk. Sie stellen sicher, dass Daten effizient und zuverlässig übertragen werden. Unter den verschiedenen Arten von Netzwerkkabeln sind STP (Shielded Twisted Pair) und UTP (Unshielded Twisted Pair) die gängigsten. Beide haben ähnliche Designs und bestehen aus gedrehten Kabelpaaren, unterscheiden sich jedoch in Bezug auf Abschirmung und EMI (elektromagnetische Interferenzen) Widerstandsfähigkeit.

In Deutschland ist der Einsatz von STP-Kabeln besonders weit verbreitet. Durch die zusätzliche Abschirmung der Kabel bieten sie einen besseren Schutz vor äußeren elektromagnetischen Störungen und sorgen für eine stabilere und zuverlässigere Datenübertragung. Besonders wichtig ist dies in Umgebungen mit hohem EMI-Aufkommen. Daher werden STP abgeschirmte Kabel oft in industriellen oder kommerziellen Umgebungen eingesetzt, wo diese Art von Störungen häufiger sind.

Im Vergleich dazu sind UTP-Kabel weniger anfällig für physische Schäden, weil sie technischer einfacher aufgebaut sind.  Dieser Kabeltyp ist flexibler und einfacher zu installieren.

Sowohl STP- als auch UTP-Kabel haben ihre spezifischen Vorzüge. Ihre Auswahl hängt von der spezifischen Netzwerkumgebung und den Anforderungen ab.

Tabelle von Netzwerkkabel Typen

Kat. Max. Frequenzbereich Geschwindigkeit Anwendungs-bereich Stecker
Cat 1 n/a Bis zu 1 Mbps Ältere Telefonleitungen RJ11
Cat 2 1 MHz Bis zu 4 Mbps Ältere Telefonleitungen und Netzwerke RJ11, RJ45
Cat 3 16 MHz Bis zu 10 Mbps Ältere Telefonleitungen und Netzwerke RJ45
Cat 4 20 MHz Bis zu 16 Mbps Ältere Netzwerke (Token Ring) RJ45
Cat 5 100 MHz Bis zu 100 Mbps Heim- und Büronetzwerke RJ45
Cat 5e 100 MHz Bis zu 1 Gbps Heim- und Büronetzwerke RJ45
Cat 6 250 MHz Bis zu 1 Gbps (10 Gbps bei kurzen Distanzen) Büronetzwerke, Rechenzentren RJ45
Cat 6a 500 MHz Bis zu 10 Gbps Rechenzentren, großflächige Netzwerke RJ45
Cat 7 600 MHz Bis zu 10 Gbps Rechenzentren, großflächige Netzwerke GG45, TERA
Cat 7a 1000 MHz Bis zu 10 Gbps Rechenzentren, großflächige Netzwerke GG45, TERA
Cat 8.1 2000 MHz Bis zu 40 Gbps Rechenzentren RJ45
Cat 8.2 2000 MHz Bis zu 40 Gbps Rechenzentren ARJ45

Alternativ kann eine Verkabelung mit Lichtwellenleitern durchgeführt werden.

 

 

 

 

Der private Adressenbereich bei IPv4

Das Internet entstand aus dem ARPAnet, das ein Produkt des kalten Krieges zwischen der Sowjetunion und den USA war. Es wurde in den 1960er Jahren von der Advanced Research Projects Agency, einer Abteilung des US-Verteidigungsministeriums, geschaffen. Es wurde ein dezentrales Netzwerk zur Übertragung von Daten mit Datenpaketen geschaffen.

1969 begannen vier Elite Universitäten – UCLA, Stanford, UC Santa Barbara und das University of Utah Research Institute das Arpanet aufzubauen – Sie wurden als die ersten Knotenpunkte des neuen Netzwerks. Die Verbindung zwischen diesen Knotenpunkten wurde mit speziell entwickelten Schnittstellen und Protokollen hergestellt.

Im Jahr 1990 wurde das ARPAnet außer Betrieb genommen, als das Internetprotokoll IPv4 eingeführt wurde und das Netzwerk in das öffentliche Internet integriert wurde.

Da die Anzahl der im Internet genutzten Geräte im Laufe der Jahre stark anstieg, erkannten die Experten, dass der Adressraum mit 32 Bit zu stark begrenzt ist. Jede Adresse im öffentlichen Internet darf nur einmal genutzt werden. Um die vielen Unternehmensnetze zu ermöglichen, wurde die  Technologie NAT (Network Address Translation) entwickelt und für die Netzwerk Klassen A bis C private Adressenpools definiert. Später wurde CIDR (Classless Inter-Domain Routing) eingeführt.

Welche privaten Adressenbereiche gibt es?

IPv4 reserviert bestimmte Adressbereiche für den privaten Gebrauch. Hier sind die drei private Adressbereiche von IPv4 mit Beispielen.

1. Private Adressbereich gemäß RFC 1918

      1. 10.0.0.0 bis 10.255.255.255 mit 224-2 Adressen pro Netz für Unternehmen mit großen Adressenbedarf
        Beispiel:
        Netzadresse 10.0.0.0
        IP Adresse 10.0.1.4
        Broadcast Adresse 10.255.255.255
        Subnetzmaske 255.0.0.0
      2. 172.16.0.0 bis 172.31.255.255 mit 216-2 Adressen pro Netz für Unternehmen mit mittleren Adressenbedarf
        Beispiel:
        Netzadresse 172.16.0.0
        IP Adresse 172.16.0.23
        Broadcast Adresse 172.16.255.255
        Subnetzmaske 255.255.0.0
      3. 192.168.0.0 bis 192.168.255.255 mit 28-2 pro Netz Adressen für Unternehmen mit geringen Adressenbedarf
        Beispiel:
        Netzadresse 192.168.3.0
        IP Adresse 192.168.3.120
        Broadcast Adresse 192.168.3.255
        Subnetzmaske 255.255.255.0

2. Link-Local Adressbereich gemäß RFC 3927
              169.254.0.0 bis 169.254.255.255 für die Übertragung von einer Adresse zu gleichzeitig mehreren Adressen

Aufbau der Netzwerk Adressierung

Angenommen, wir haben ein Netzwerk mit der IP-Adresse 192.168.3.21 und einer Subnetzmaske von 255.255.255.0.

In diesem Fall ist die IP-Adresse 192.168.3.0 die Netzadresse, also die Adresse des vorliegenden Netzwerks.

IP-Adressen werden verwendet, um einzelne Geräte in einem Netzwerk zu identifizieren. Jedes Gerät in einem Netzwerk hat eine eindeutige IP-Adresse, wie zum Beispiel 192.168.3.1 oder 192.168.3.21.

Die Subnetzmaske gibt an, welcher Teil der IP-Adresse die Netzwerkadresse ist und welcher Teil für die Identifizierung der einzelnen Geräte im vorliegenden Netz verwendet wird. In diesem Fall ist die Subnetzmaske 255.255.255.0, was bedeutet, dass die ersten drei Zahlenblöcke (192.168.3) die Netzwerkadresse sind und der letzte Zahlenblock (0) für die Identifizierung der Geräte im Host verwendet wird.

Die Broadcast-Adresse ist die höchste Adresse in einem Netzwerk und wird verwendet, um Daten gleichzeitig an alle Geräte im Netzwerk zu senden. In unserem Beispiel wäre die Broadcast-Adresse 192.168.3.255. Wenn also ein Gerät eine Nachricht an alle anderen Geräte im Netzwerk senden möchte und die genaue IP-Adresse nicht kennt, würde es diese Adresse als Zieladresse verwenden.

Einsatzbereich der privaten IP-Adressen

Diese Adressbereiche sind für den privaten Gebrauch in lokalen Netzwerken vorgesehen. Sie können durch NAT beliebig oft in Netzen genutzt werden und werden nicht im Internet geroutet. Sie ermöglichen es vielen Organisationen jeweils eigene IP-Adressen in ihren Netzwerken zu verwenden, ohne mit öffentlichen Adressen zu kollidieren.

 

 

Internet der Dinge oder IoT, was ist das?

IoT steht für das Internet der Dinge (Internet of Things). Es bezieht sich auf das Konzept, dass physische Objekte und Geräte miteinander und mit dem Internet verbunden sind. Die Geräte sind in der Lage, Daten auszutauschen und miteinander zu kommunizieren.

Im IoT werden Objekte und Geräte mit Sensoren ausgestattet, die Daten über ihre Umgebung, ihren Zustand oder ihre Leistungsfähigkeit erfassen können. Diese Daten werden dann über Netzwerkverbindungen, wie z. B. drahtlose oder kabelgebundene Verbindungen, an andere Geräte, Systeme oder Cloud-Plattformen übertragen. Dort werden die Daten verarbeitet, analysiert und genutzt, um Erkenntnisse zu gewinnen, Aktionen auszulösen oder Entscheidungen zu treffen.

Durch das IoT werden verschiedene Bereiche des täglichen Lebens und der Industrie transformiert.

IoT Industrie

Beispiele für IoT-Anwendungen im Smart Home

Das Internet der Dinge bietet eine breite Palette von Einsatzmöglichkeiten im smarten Zuhause, in dem vernetzte Geräte und Systeme zu einem intelligenten und automatisierten Wohnraum führen.

1. Hausautomatisierung durch Steuerung, Vernetzung und Sensorik

IoT ermöglicht die Steuerung verschiedener Aspekte des Hauses, einschließlich Beleuchtung, Heizung, Klimatisierung und Sicherheitssysteme. Durch vernetzte Geräte und Sensoren können Benutzer diese Systeme fernsteuern und automatisierte Zeitpläne oder Szenarien erstellen, um Energie zu sparen und den Komfort zu verbessern.

2. Energieeffizienz erhöhen

Durch das Internet der Dinge wird der Energieverbrauch im Smart Home optimiert. Durch Sensoren und intelligente Thermostate können Heizung und Kühlung automatisch an anwesende Personen oder wechselnde Umgebungsbedingungen angepasst werden. Basierend auf Bewegungserkennung und Tageslichtstärke steuern smarte Beleuchtungssysteme die Beleuchtung. Dadurch können Energieeinsparungen erzielt werden.

3. Überwachung ermöglichen

IoT-basierte Sicherheitssysteme ermöglichen die Fernüberwachung des Hauses. Durch vernetzte Kameras, Bewegungsmelder und Tür- und Fenstersensoren erhalten Benutzer Benachrichtigungen bei verdächtigen Aktivitäten. Zugriffskontrollen und Gebäude können auch von Dritten überwacht werden.

4. Haushaltsgeräte und Haushaltsmanagement optimieren

Vernetzte Haushaltsgeräte wie intelligente Kühlschränke, Waschmaschinen oder Staubsaugerroboter können mit dem Internet verbunden werden. Benutzer können diese Geräte über ihre Smartphones steuern, den Betriebsstatus überwachen oder Benachrichtigungen über beendete Aufgaben erhalten. IoT-fähige Geräte können auch die Verbrauchsdaten sammeln, um Ressourcen zu optimieren und die Wartung anmelden.

5. Gesundheits- und Wohlbefinden erhöhen

IoT kann auch bei der Überwachung der Gesundheit und des Wohlbefindens von Personen helfen. Wearables wie Smartwatches oder Fitnesstracker können Daten, wie Herzfrequenz oder Schlafverhalten, sammeln und an das Smart Home-System senden. Dies ermöglicht die Anpassung von Beleuchtung, Temperatur oder Musik, um eine angenehme Atmosphäre zu schaffen.

Diese Einsatzmöglichkeiten zeigen, wie IoT die Funktionalität und den Komfort im Smart Home verbessern kann. Durch die Vernetzung von Geräten und die Integration von Automatisierung und intelligenten Funktionen können Benutzer Energie sparen, die Sicherheit erhöhen und den Wohnkomfort steigern. Es zeigt aber auch, die Gefahren, die George Orwell in seinem berühmten Buch 1984  und Aldous Huxley in Schöne Neue Welt beschrieben haben.

Das Internet der Dinge im Kontext der smarten Fabriken

Das IoT spielt eine entscheidende Rolle bei der Umsetzung von Smart Factories, auch bekannt als Industrie 4.0. Dazu einige Beispiel des IoT in Smart Factories.

1. Überwachung und Steuerung von Anlagen

Durch die Integration von Sensoren in Maschinen und Anlagen können Echtzeitdaten über deren Zustand und Leistung gesammelt werden. Das ermöglicht eine kontinuierliche Überwachung, Fehlererkennung und präventive Wartung. Es ermöglicht die automatisierte Fernüberwachung und -steuerung von Maschinen, was die Effizienz verbessert und Ausfallzeiten reduziert.

2. Lagerbestandsverwaltung automatisieren

Mit Kameras und Sensoren können Lagerbestände automatisch überwacht und verfolgt werden. Dies ermöglicht eine präzise Bestandsverwaltung, eine automatische Nachbestellung bei Bedarf, sowie die Optimierung des Lagerlayouts und der Materialflüsse.

3. Supply Chain Management optimieren und überwachen

Die Transparenz und Effizienz in von Lieferketten werden mit IoT weiter verbessert. Sensoren können mit RFID den Standort von Produkten oder Komponenten verfolgen. Die Temperatur und Feuchtigkeit während des Transports werden mit Sensoren überwacht und liefern Echtzeitinformationen über den Lieferstatus und die Qualität. Dadurch können Schäden, Engpässe oder Verzögerungen frühzeitig erkannt und Maßnahmen ergriffen werden.

4. Qualitätskontrolle durch Überwachung und Steuerung

IoT-Sensoren werden in Fertigungsprozessen eingesetzt, um die Qualität zu überwachen und steuern. Durch die Echtzeitüberwachung können Abweichungen von der Spezifikation sofort erkannt werden.

5. Effizienz und Sicherheit verbessern

Das Internet der Dinge unterstützt bei der Sicherheit am Arbeitsplatz und steigert die Effizienz der Arbeitskräfte. Zum Beispiel können vernetzte Sensoren in Echtzeit Informationen über die Arbeitsbedingungen liefern, um potenzielle Gefahren zu erkennen und rechtzeitig Maßnahmen zu ergreifen. Wearables und vernetzte Geräte können die Zusammenarbeit und Kommunikation zwischen den Mitarbeitern verbessern.

Vorteile des IoT

Die Vorteile des IoT liegen in der Möglichkeit, umfassende Daten aus der physischen Welt zu sammeln und zu nutzen, um fundierte Entscheidungen zu treffen, Effizienz zu steigern, Kosten zu senken, neue Dienstleistungen zu entwickeln und das tägliche Leben zu verbessern.

Nachteile von IoT

Nachteile durch IoT sind noch zu lösende Probleme, wie die Sicherheit und den Datenschutz der gesammelten Daten. Auch die Wartungs- und Updatemöglichkeit bei kostengünstigen IoT Geräten, sowie bei der Interoperabilität und Skalierbarkeit von IoT-Systemen sind teilweise ungelöst.

Fazit

Die Einsatzmöglichkeiten des Internet der Dinge in smarten Fabriken zeigen, wie die Flexibilität und Anpassungsfähigkeit in der Fertigung verbessern kann. Durch die Integration von IoT in die industrielle Automatisierung können Unternehmen Wettbewerbsvorteile erzielen und auf die sich ändernden Anforderungen des Marktes reagieren. Es gibt aber wachsende ungelöste Probleme, auf die bereits George Orwell in seinem Buch 1984  und Aldous Huxley in Schöne Neue Welt und viele weitere Autoren hingewiesen haben.

 

siehe auch Smart City NEOM

 

Primär-, Sekundär- und Tertiärverkabelung bei Netzwerken

In der Netzwerktechnik werden häufig die Begriffe Primärverkabelung, Sekundärverkabelung und Tertiärverkabelung verwendet, um verschiedene Aspekte der Verkabelungsinfrastruktur zu beschreiben. Dazu ein Vergleich der Primär-, Sekundär- und Tertiärverkabelung.

blankVerkabelung von Netzen

Beschreibung:
SV = Standortverteiler
GV = Gebäudeverteiler
EV = Etagenverteiler

Primärverkabelung

  • Die Primärverkabelung umfasst die Hauptverkabelung eines Gebäudes oder Campus. Sie stellt die grundlegende Infrastruktur für die Netzwerkkonnektivität bereit und verbindet den zentralen Netzwerkbereich, wie beispielsweise das Rechenzentrum oder den Serverraum, mit den verschiedenen Endpunkten im Gebäude.
  • Die Primärverkabelung folgt üblicherweise bestimmten Standards wie zum Beispiel bei Ethernet mit metallischen Leitern (mit Cat5e, Cat6, Cat6a oder Cat7) oder Glasfaser (Singlemode, Multimode oder Monomode), um eine zuverlässige und leistungsfähige Übertragung von Daten zu gewährleisten.
  • Die Primärverkabelung kann mehrere Hunderte von Metern bis zu mehreren Kilometern umfassen, je nach den Anforderungen des Netzwerks und der Größe des Gebäudes oder Campus. Je nach Länge können dabei Repeater zur Signalverstärkung eingesetzt werden.

Sekundärverkabelung

  • Die Sekundärverkabelung bezieht sich auf die Verkabelung innerhalb eines bestimmten Bereichs oder Raums, wie beispielsweise Büros, Arbeitsbereiche oder einzelne Etagen. Sie stellt die Verbindung zwischen der Primärverkabelung und den Endgeräten, wie Computern, Telefonen oder Druckern, her.
  • Die Sekundärverkabelung folgt in der Regel den gleichen Standards wie die Primärverkabelung, um eine nahtlose Konnektivität innerhalb des betreffenden Bereichs zu gewährleisten.
  • Die Länge der Sekundärverkabelung ist normalerweise begrenzt und kann je nach den räumlichen Gegebenheiten und Anforderungen variieren, typischerweise im Bereich von einigen Metern bis mehr als einhundert Meter.

Tertiärverkabelung

  • Die Tertiärverkabelung bezieht sich auf die Verkabelung auf einer sehr lokalen Ebene, wie z. B. Verbindungen zwischen einzelnen Anschlüssen wie Patchdosen und Geräten innerhalb eines Arbeitsbereichs. Sie umfasst in der Regel Patchkabel, Steckverbinder und Verteiler, um eine flexible Verbindung zwischen Endgeräten zu ermöglichen.
  • Die Tertiärverkabelung kann die gleichen Standards wie die Primär- und Sekundärverkabelung verwenden oder spezielle Kabeltypen für kurze Strecken und Flexibilität aufweisen, wie z. B. RJ45-Patchkabel oder optische Patchkabel.
  • Die Länge der Tertiärverkabelung ist normalerweise sehr kurz, typischerweise im Bereich von wenigen Metern bis mehr als einhundert Meter, um die direkte Verbindung zwischen den Endgeräten herzustellen.

 

News zum Weltquantentag (14.04.2023)

Das Institut der Physik und IOP Publishing feierten am 14.04.2023 den Weltquantentag. Das IOP Publishing wird auch IOPP genannt und stellt öffentlich seine Quantensammlung für die Forschung zur Verfügung.

Die Quantentechnologie entwickelt sich rasch und ähnlich wie bei der künstlichen Intelligenz gibt es neue Felder, wie die Quantenmeteorologie und die Quantenchemie.

Dieses Jahr gab es zwei Preisträger in der Quantenforschung. Die Preisverleihung findet am 25. Mai 2023 statt.

Annabelle Bohrdt von der Universität Regensburg erhielt den International Quantum Technology Emerging Researcher Award. Frau Bohrdt fand neue Ansätze zur Analyse stark korrelierter Quantenmaterie mit Hilfe von Schnappschüssen von Quantenzuständen.

Feihu Xu von der University of Science and Technology of China gewann den International Quantum Technology Early Career Scientist Award für seine hervorragenden Beiträge bei Quantenkommunikation, der Hochgeschwindigkeit-Quantenkommunikation und von Quantennetzwerken. Dazu gehört auch der wichtige Ansatz über Sicherheit in der Quantenkryptographie, der aus meiner Sicht ein wichtiger Schritt zu zukünftiger, sicherer Kommunikation darstellt.

Ich gratuliere beiden Preisträgern zu Ihren hervorragenden Leistungen.

Warum sind diese Entwicklungen wichtig?

Weil hier in den letzten Jahren eine bahnbrechende Weiterentwicklung stattfand. Im Jahr 2020 konnte China die Reichweite bei der Quantenkommunikation verzehnfachen und auf 1.120 Kilometer ausweiten.

Durch die Quantenkryptographie und den Kommunikationsstrecken ohne Verzögerung wird es dem globalen Süden möglich sein, ein globales Neo-Internet aufzubauen, das dem heutigen Internet um Welten überlegen sein wird.

 

 

NAS – Network Attached Storage einfach erklärt

Das NAS (Network Attached Storage) ist eine Speicherlösung, die bei kleinen bis mittleren Unternehmen und bei Privatpersonen immer beliebter wird. Es ist eine multifunktionale Lösung zum Speichern von Daten. Es gibt NAS Systeme, die einen Fileserver, Streaming Server, FTP Server, Webserver und weitere multimediale Dienste über ein Netzwerk zur Verfügung stellen können.

Schematischer Aufbau NAS Netzwerk

Ein NAS hat einen eigenen Prozessor, RAM und ein Betriebssystem. Es ist also ähnlich wie ein Server. Aber der Funktionsumfang ist beim NAS eingeschränkter, weil zum Beispiel Backups nicht unterstützt werden. Manche Network Attached Storage Systeme haben mehr als ein Laufwerk und können RAID 0 oder 1 zur Verfügung stellen.

So können NAS Systeme als Private- oder Home Cloud eingesetzt werden. Mit Hilfe der Administration können Gruppen und einzelne Accounts mit unterschiedlichen Zugriffsrechten eingerichtet werden.

Meist werden die Protokolle FTP, SMB, AFP, NFS und CIFS unterstützt. Universal Plug and Play (UPnP) und Digital Living Network Alliance (DLNA) werden von vielen NAS Systemen unterstützt. Alle gängigen Betriebssysteme bieten somit Unterstützung für NAS Geräte.

Das ISO-OSI Schichtenmodell

Um die  Datenübertragung in Netzen leichter beschreiben zu können, wurde in den 1960er Jahren das DoD Schichtenmodell entwickelt.

Schicht Name
4 Process
3 Host-to-Host
2 Internet
1 Network Access

Dieses Modell besteht aus 4 Schichten und bildet eine Grundlage des heute verwendeten ISO-OSI Schichtenmodells. Die Organisation ISO hat den Open Systems Interconnect im Jahr 1978 entworfen.

Das heutige OSI Modell nutzt 7 Schichten, bei der die Kommunikation zwischen Sender und Empfänger mit Hilfe von technischen Einrichtungen beschrieben wird.

Schicht Deutsche Bezeichnung Englische Bezeichnung Protokolle Geräte oder Hardware
7 Anwendungs-schicht Application Layer HTTPS
FTP
SMTP
LDAP
Gateway
Proxy
6 Darstellungs-schicht Presentation Layer
5 Sitzungsschicht Session Layer
4 Transport-schicht Transport Layer TCP
UDP
3 Vermittlungs-schicht Network Layer IP
ICMP
IPsec
Router
Layer 3 Switch
2 Sicherungs-schicht Data Link Layer WLAN
Ethernet
MAC
Switch
Bridge
Access-Point
1 Bitübertragungs-schicht Physical Layer 1000BASE-T
Token Ring
Repeater
Hub
Netzwerk-kabel

In Schicht 7 werden Daten durch die Anwendung über das Netzwerk an ein weiteres Gerät gesandt.

Das ISO-OSI Schichtenmodell

Dabei nehmen die Daten den Weg von Schicht 7 (Application Layer) des Senders zu Schicht 1 (Physical Layer) des Senders. Dann werden die Daten als Datenpakete über das Netzwerk zum Ziel transportiert. Beim Empfänger nehmen die Daten den Weg von Schicht 1 zu Schicht 7 und werden aufbereitet. Die Anwendung im Empfänger nutzt die Daten und visualisiert sie.

 

 

NAT – Wie funktioniert das?

NAT heißt Network Adress Translation und dient zum ändern von Adressen zwischen zwei Netzwerken. Meist ist das eine Netzwerk ein Intranet und verwendet daher private IP Adressen und das andere Netz ist das Internet.

Bei der Entwicklung des Internet dachten die Entscheider, dass ein Adressenumfang von 2³² Bit ausreichen würde, um alle Geräte adressieren zu können. So wurden am Anfang ein 4 Netzwerk-Klassen definiert.

Klassendefinition bei IP-V4

Klasse Führende Bits des linken Oktets Adressbereich CIDR Netzmaske
A 0000 0.0.0.0 – 127.255.255.255 8 255.0.0.0
B 1000 128.0.0.0 – 191.255.255.255 16 255.255.0.0
C 1100 192.0.0.0 – 223.255.255.255 24 255.255.255.0
D 1110 224.0.0.0 – 239.255.255.255    
E 1111 240.0.0.0 – 255.255.255.255    

Durch die großzügige Vergabe von Adressen mit den Netzklassen wurde die Anzahl der IP Adressen bald knapp. Es wurde Classless Inter-Domain Routing (CIDR) zur sparsameren Vergabe von Adressen  eingeführt. Aber das Internet entwickelte sich rasant weiter und neue Geräte wie Smartphones, Tablets und smarte Geräte kamen auf den Markt. Bald hatten viele Nutzer mehrere dieser Geräte im Einsatz. Zudem wurden immer mehr Produkte ans Internet angebunden. Dies war der Start des Internet der Dinge. Die Anzahl der benötigten IP Adressen stieg drastisch weiter.

Mit  Network Adress Translation (NAT) kann beliebig oft ein im privaten Adressenbereich genutzter  Gerätepool ans Internet angebunden werden. Der private Adressbereich wird im Intranet genutzt. Nach außen im Internet nutzt der dazu notwendige Router eine vom Provider für das Internet vergebene IP Adresse. Die Umwandlung und Zuordnung der entsprechenden Adressen erfolgt mit NAT. 

Privates Netz NAT Öffentliches Netz
192.168.1.16 <- NAT Umwandlung-> 154.25.2.23

Private Adressenbereiche bei IP-V4

Klasse Adressbereich CIDR Anzahl Netze mit IP Adressen
A 10.0.0.0 – 10.255.255.255 8 1 privates Netz 
mit 16.777.216 Adressen 
B 172.16.0.0 – 172.31.255.255 12 16 private Netze 
mit jeweils 65.536  Adressen 
C 192.168.0.0 – 192.168.255.255 16 256 private Netze 
mit jeweils 256 Adressen 

Die Anzahl der benötigten IP Adressen bestimmt den Adressbereich des privaten Adressenraums. Für ein Netz wird immer die erste IP Adresse (192.168.1.0) als Netzadresse und die letzte IP Adresse (192.168.1.63) als Broadcast Adresse reserviert. So stehen in einem Intranet 62 IP Adressen benötigt, so wird die Netzadresse 192.168.1.0/26 und die Subnetzmaske 255.255.255.192 sein.

Zur Übersicht
Firewall Übersicht – Schutz und Sicherheit in Netzen